Microplasma-asisted and one-step fabrication of Ag nanoparticle/paper for disposable surface-enhanced Raman scatting substrate

Yi-Jui, Yeh and Wei-Hung Chiang*

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan

* Corresponding author: whchiang@mail.ntust.edu.tw

Acknowledgement

Motivation

Heavy metal & Pesticide Laser Raman signal Resticide Au@Ag Pesticide

B. Liu et al., Anal Chem (2012)

Explosive

Dementic et al., Analyst, (2012)

Approach

Advantage of paper-based substrate

- **Low-cost analytical tests**
- Flexible property
- Disposable paper
- ✓ Large surface area for adsorption

Current way (Micoplasma system)

SEM

- ✓ Short reaction times (10 mins)
- ✓ Green synthesis
- ✓ One-step process
- ✓ High Raman intensity

Experiment Set up

Electrode dissolve (ED)

Plasma Cathode

 $Ag^+ + e^- \rightarrow Ag^0$

Silver anode $Ag^0 \rightarrow Ag^+ + e^-$

Precursor: Nitric acid, Fructose, H₂O

Result and Discussion

Process

Application

Detect morphology

XRD

Detect position in the microplasma system

NTHET SEL 5.0M/ VES.000 100mm W/D 0.5mm

Detect average size of nanoparticles

2 tneta	38.33
FWHM	0.620
D-spacing	2.348 atom
Grain size	14.2 nm

20 22

Detect EDS

Raman

Detect RSD for 10 times RSD is only 2.79% Detect Limit of detection LOD down to 10⁻¹¹N

LOD down to 10⁻¹¹M

10⁻⁴M

10⁻⁶M

10⁻⁸M

10⁻⁹M

10⁻¹⁰M

x10

600 800 1000 1200 1400 1600 1800

Wanelength (cm⁻¹)

Conclusion

- > One-step synthesis of AgNPs on disposable paper for SERS application.
- > Paper-based plasmonic SERS substrate is cost-efficient and does not require complex methods.
- ➤ Exhibit excellent reproducibility (~2.79% RSD)
- ➤ Shows LOD of paper-base substrate is 10⁻¹¹M for Rh6G
- > The wide range for Rh6G detection.
- > Ideal substrate is stable for long periods of time.

Future work

SERS

Food safety, Waste water, Biomolecules

APPLICATION

Light