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Counting

Multiplication Rule - Let’s say we have a compound experiment
(an experiment with multiple components). If the 1st component has
n1 possible outcomes, the 2nd component has n2 possible outcomes,
and the rth component has nr possible outcomes, then overall there
are n1n2 . . . nr possibilities for the whole experiment.

Sampling Table - The sampling tables describes the different ways
to take a sample of size k out of a population of size n. The column
names denote whether order matters or not.

Matters Not Matter

With Replacement n
k

(n+ k − 1

k

)
Without Replacement

n!

(n− k)!

(n
k

)
Näıve Definition of Probability - If the likelihood of each
outcome is equal, the probability of any event happening is:

P (Event) =
number of favorable outcomes

number of outcomes

Probability and Thinking Conditionally

Independence
Independent Events - A and B are independent if knowing one
gives you no information about the other. A and B are independent if
and only if one of the following equivalent statements hold:

P (A ∩B) = P (A)P (B)

P (A|B) = P (A)

Conditional Independence - A and B are conditionally
independent given C if: P (A ∩B|C) = P (A|C)P (B|C). Conditional
independence does not imply independence, and independence does
not imply conditional independence.

Unions, Intersections, and Complements
De Morgan’s Laws - Gives a useful relation that can make
calculating probabilities of unions easier by relating them to
intersections, and vice versa. De Morgan’s Law says that the
complement is distributive as long as you flip the sign in the middle.

(A ∪B)
c ≡ A

c ∩B
c

(A ∩B)
c ≡ A

c ∪B
c

Joint, Marginal, and Conditional Probabilities
Joint Probability - P (A ∩B) or P (A,B) - Probability of A and B.

Marginal (Unconditional) Probability - P (A) - Probability of A

Conditional Probability - P (A|B) - Probability of A given B
occurred.

Conditional Probability is Probability - P (A|B) is a probability
as well, restricting the sample space to B instead of Ω. Any theorem
that holds for probability also holds for conditional probability.

Simpson’s Paradox
P (A | B,C) < P (A | Bc, C) and P (A | B,Cc) < P (A | Bc, Cc)

yet still, P (A | B) > P (A | Bc)

Bayes’ Rule and Law of Total Probability

Law of Total Probability with partitioning set B1,B2,B3, ...Bn and
with extra conditioning (just add C!)

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + ...P (A|Bn)P (Bn)

P (A) = P (A ∩B1) + P (A ∩B2) + ...P (A ∩Bn)

P (A|C) = P (A|B1,C)P (B1|C) + ...P (A|Bn,C)P (Bn|C)

P (A|C) = P (A ∩B1|C) + P (A ∩B2|C) + ...P (A ∩Bn|C)

Law of Total Probability with B and Bc (special case of a partitioning
set), and with extra conditioning (just add C!)

P (A) = P (A|B)P (B) + P (A|Bc
)P (B

c
)

P (A) = P (A ∩B) + P (A ∩B
c
)

P (A|C) = P (A|B,C)P (B|C) + P (A|Bc
,C)P (B

c|C)

P (A|C) = P (A ∩B|C) + P (A ∩B
c|C)

Bayes’ Rule, and with extra conditioning (just add C!)

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A)P (A)

P (B)

P (A|B,C) =
P (A ∩B|C)

P (B|C)
=
P (B|A,C)P (A|C)

P (B|C)

Odds Form of Bayes’ Rule, and with extra conditioning (just add C!)

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)

P (A)

P (Ac)

P (A|B,C)

P (Ac|B,C)
=

P (B|A,C)

P (B|Ac,C)

P (A|C)

P (Ac|C)

Random Variables and their Distributions

PMF, CDF, and Independence
Probability Mass Function (PMF) (Discrete Only) gives the
probability that a random variable takes on the value X.

PX(x) = P (X = x)

Cumulative Distribution Function (CDF) gives the probability
that a random variable takes on the value x or less

FX(x0) = P (X ≤ x0)

Independence - Intuitively, two random variables are independent if
knowing one gives you no information about the other. X and Y are
independent if for ALL values of x and y:

P (X = x, Y = y) = P (X = x)P (Y = y)

Expected Value and Indicators

Distributions
Probability Mass Function (PMF) (Discrete Only) is a function
that takes in the value x, and gives the probability that a random
variable takes on the value x. The PMF is a positive-valued function,
and

∑
x P (X = x) = 1

PX(x) = P (X = x)

Cumulative Distribution Function (CDF) is a function that
takes in the value x, and gives the probability that a random variable
takes on the value at most x.

F (x) = P (X ≤ x)

Expected Value, Linearity, and Symmetry
Expected Value (aka mean, expectation, or average) can be thought
of as the “weighted average” of the possible outcomes of our random
variable. Mathematically, if x1, x2, x3, . . . are all of the possible values
that X can take, the expected value of X can be calculated as follows:

E(X) =
∑
i
xiP (X = xi)

Note that for any X and Y , a and b scaling coefficients and c is our
constant, the following property of Linearity of Expectation holds:

E(aX + bY + c) = aE(X) + bE(Y ) + c

If two Random Variables have the same distribution, even when they
are dependent by the property of Symmetry their expected values
are equal.

Conditional Expected Value is calculated like expectation, only
conditioned on any event A.

E(X|A) =
∑
x
xP (X = x|A)

Indicator Random Variables
Indicator Random Variables is random variable that takes on
either 1 or 0. The indicator is always an indicator of some event. If the
event occurs, the indicator is 1, otherwise it is 0. They are useful for
many problems that involve counting and expected value.

Distribution IA ∼ Bern(p) where p = P (A)

Fundamental Bridge The expectation of an indicator for A is the
probability of the event. E(IA) = P (A). Notation:

IA =

{
1 A occurs

0 A does not occur

Variance
Var(X) = E(X

2
)− [E(X)]

2

Expectation and Independence
If X and Y are independent, then

E(XY ) = E(X)E(Y )

Continuous RVs, LotUS, and UoU

Continuous Random Variables
What’s the prob that a CRV is in an interval? Use the CDF (or
the PDF, see below). To find the probability that a CRV takes on a
value in the interval [a, b], subtract the respective CDFs.

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a)

Note that for an r.v. with a normal distribution,

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a)

= Φ

(
b− µ
σ2

)
− Φ

(
a− µ
σ2

)
What is the Cumulative Density Function (CDF)? It is the
following function of x.

F (x) = P (X ≤ x)

What is the Probability Density Function (PDF)? The PDF,
f(x), is the derivative of the CDF.

F
′
(x) = f(x)

Or alternatively,

F (x) =

∫ x

−∞
f(t)dt

Note that by the fundamental theorem of calculus,

F (b)− F (a) =

∫ b

a

f(x)dx

Thus to find the probability that a CRV takes on a value in an
interval, you can integrate the PDF, thus finding the area under the
density curve.
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How do I find the expected value of a CRV? Where in discrete
cases you sum over the probabilities, in continuous cases you integrate
over the densities.

E(X) =

∫ ∞
−∞

xf(x)dx

Law of the Unconscious Statistician (LotUS)
Expected Value of Function of RV Normally, you would find the
expected value of X this way:

E(X) = ΣxxP (X = x)

E(X) =

∫ ∞
−∞

xf(x)dx

LotUS states that you can find the expected value of a function of a
random variable g(X) this way:

E(g(X)) = Σxg(x)P (X = x)

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx

What’s a function of a random variable? A function of a random
variable is also a random variable. For example, if X is the number of
bikes you see in an hour, then g(X) = 2X could be the number of bike
wheels you see in an hour. Both are random variables.

What’s the point? You don’t need to know the PDF/PMF of g(X)
to find its expected value. All you need is the PDF/PMF of X.

Universality of Uniform
When you plug any random variable into its own CDF, you get a
Uniform[0,1] random variable. When you put a Uniform[0,1] into an
inverse CDF, you get the corresponding random variable. For example,
let’s say that a random variable X has a CDF

F (x) = 1− e−x

By the Universality of the the Uniform, if we plug in X into this
function then we get a uniformly distributed random variable.

F (X) = 1− e−X ∼ U

Similarly, since F (X) ∼ U then X ∼ F−1(U). The key point is that
for any continuous random variable X, we can transform it into a
uniform random variable and back by using its CDF.

Moment Generating Functions (MGFs)

Moments
Moments describe the shape of a distribution. The kth moment of a
random variable X is

µ
′
k = E(X

k
)

The mean, variance, and skewness of a distribution can be expressed
by its moments. Specifically:

Mean E(X) = µ′1

Variance Var(X) = E(X2)− E(X)2 = µ′2 − (µ′1)2

Moment Generating Functions
MGF For any random variable X, this expected value and function of
dummy variable t;

MX(t) = E(e
tX

)

is the moment generating function (MGF) of X if it exists for a
finitely-sized interval centered around 0. Note that the MGF is just a
function of a dummy variable t.

Why is it called the Moment Generating Function? Because
the kth derivative of the moment generating function evaluated 0 is
the kth moment of X!

µ
′
k = E(X

k
) = M

(k)
X (0)

This is true by Taylor Expansion of etX

MX(t) = E(e
tX

) =
∞∑
k=0

E(Xk)tk

k!
=
∞∑
k=0

µ′kt
k

k!

Or by differentiation under the integral sign and then plugging in t = 0

M
(k)
X (t) =

dk

dtk
E(e

tX
) = E

(
dk

dtk
e
tX

)
= E(X

k
e
tX

)

M
(k)
X (0) = E(X

k
e
0X

) = E(X
k
) = µ

′
k

MGF of linear combinations If we have Y = aX + c, then

MY (t) = E(e
t(aX+c)

) = e
ct
E(e

(at)X
) = e

ct
MX(at)

Uniqueness of the MGF. If it exists, the MGF uniquely defines
the distribution. This means that for any two random variables X and
Y , they are distributed the same (their CDFs/PDFs are equal) if and
only if their MGF’s are equal. You can’t have different PDFs when
you have two random variables that have the same MGF.

Summing Independent R.V.s by Multiplying MGFs. If X and
Y are independent, then

M(X+Y )(t) = E(e
t(X+Y )

) = E(e
tX

)E(e
tY

) = MX(t) ·MY (t)

M(X+Y )(t) = MX(t) ·MY (t)

The MGF of the sum of two random variables is the product of the
MGFs of those two random variables.

Joint PDFs and CDFs

Joint Distributions
Review: Joint Probability of events A and B: P (A ∩ B)
Both the Joint PMF and Joint PDF must be non-negative and
sum/integrate to 1. (

∑
x

∑
y P (X = x, Y = y) = 1)

(
∫
x

∫
y
fX,Y (x, y) = 1). Like in the univariate cause, you sum/integrate

the PMF/PDF to get the CDF.

Conditional Distributions
Review: By Baye’s Rule, P (A|B) =

P (B|A)P (A)
P (B)

Similar conditions

apply to conditional distributions of random variables.
For discrete random variables:

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=
P (X = x|Y = y)P (Y = y)

P (X = x)

For continuous random variables:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX|Y (x|y)fY (y)

fX(x)

Hybrid Bayes’ Rule

f(x|A) =
P (A|X = x)f(x)

P (A)

Marginal Distributions
Review: Law of Total Probability Says for an event A and partition
B1, B2, ...Bn: P (A) =

∑
i P (A ∩ Bi)

To find the distribution of one (or more) random variables from a joint
distribution, sum or integrate over the irrelevant random variables.
Getting the Marginal PMF from the Joint PMF

P (X = x) =
∑
y

P (X = x, Y = y)

Getting the Marginal PDF from the Joint PDF

fX(x) =

∫
y

fX,Y (x, y)dy

Independence of Random Variables
Review: A and B are independent if and only if either
P (A ∩ B) = P (A)P (B) or P (A|B) = P (A).
Similar conditions apply to determine whether random variables are
independent - two random variables are independent if their joint
distribution function is simply the product of their marginal
distributions, or that the a conditional distribution of is the same as
its marginal distribution.
In words, random variables X and Y are independent for all x, y, if
and only if one of the following hold:

• Joint PMF/PDF/CDFs are the product of the Marginal PMF
• Conditional distribution of X given Y is the same as the

marginal distribution of X

Multivariate LotUS
Review: E(g(X)) =

∑
x g(x)P (X = x), or

E(g(X)) =
∫∞
−∞ g(x)fX(x)dx

For discrete random variables:

E(g(X,Y )) =
∑
x

∑
y

g(x, y)P (X = x, Y = y)

For continuous random variables:

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy

Covariance and Transformations

Covariance and Correlation
Covariance is the two-random-variable equivalent of Variance,
defined by the following:

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

Note that

Cov(X,X) = E(XX)− E(X)E(X) = Var(X)

Correlation is a rescaled variant of Covariance that is always
between -1 and 1.

Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

Cov(X,Y )

σXσY

Covariance and Indepedence - If two random variables are
independent, then they are uncorrelated. The inverse is not necessarily
true.

X ⊥⊥ Y −→ Cov(X,Y ) = 0

X ⊥⊥ Y −→ E(XY ) = E(X)E(Y )

Covariance and Variance - Note that

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Var(X1 +X2 + · · ·+Xn) =

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj)

In particular, if X and Y are independent then they have covariance 0
thus

X ⊥⊥ Y =⇒ Var(X + Y ) = Var(X) + Var(Y )

In particular, If X1, X2, . . . , Xn are identically distributed have the
same covariance relationships, then

Var(X1 +X2 + · · ·+Xn) = nVar(X1) + 2
(n

2

)
Cov(X1, X2)

Covariance and Linearity - For random variables W,X, Y, Z and
constants a, b:

Cov(X,Y ) = Cov(Y,X)

Cov(X + a, Y + b) = Cov(X,Y )

Cov(aX, bY ) = abCov(X,Y )

Cov(W +X,Y + Z) = Cov(W,Y ) + Cov(W,Z) + Cov(X,Y )

+ Cov(X,Z)



Covariance and Invariance - Correlation, Covariance, and Variance
are addition-invariant, which means that adding a constant to the
term(s) does not change the value. Let b and c be constants.

Var(X + c) = Var(X)

Cov(X + b, Y + c) = Cov(X,Y )

Corr(X + b, Y + c) = Corr(X,Y )

In addition to addition-invariance, Correlation is scale-invariant,
which means that multiplying the terms by any constant does not
affect the value. Covariance and Variance are not scale-invariant.

Corr(2X, 3Y ) = Corr(X,Y )

Continuous Transformations
Why do we need the Jacobian? We need the Jacobian to rescale
our PDF so that it integrates to 1.

One Variable Transformations Let’s say that we have a random
variable X with PDF fX(x), but we are also interested in some
function of X. We call this function Y = g(X). Note that Y is a
random variable as well. If g is differentiable and one-to-one (every
value of X gets mapped to a unique value of Y ), then the following is
true:

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ fY (y)

∣∣∣∣ dydx
∣∣∣∣ = fX(x)

To find fY (y) as a function of y, plug in x = g−1(y).

fY (y) = fX(g
−1

(y))

∣∣∣∣ ddy g−1
(y)

∣∣∣∣
The derivative of the inverse transformation is referred to the
Jacobian, denoted as J.

J =
d

dy
g
−1

(y)

Convolutions
Definition If you want to find the PDF of a sum of two independent
random variables, you take the convolution of their individual
distributions.

fX+Y (t) =

∫ ∞
−∞

fx(x)fy(t− x)dx

Example Let X,Y ∼ i.i.d N(0, 1). Treat t as a constant. Integrate as
usual.

fX+Y (t) =

∫ ∞
−∞

1
√

2π
e
−x2/2 1

√
2π
e
−(t−x)2/2

dx

Poisson Processes and Order Statistics

Poisson Process
Definition We have a Poisson Process if we have

1. Arrivals at various times with an average of λ per unit time.

2. The number of arrivals in a time interval of length t is Pois(λt)

3. Number of arrivals in disjoint time intervals are independent.

Count-Time Duality - We wish to find the distribution of T1, the
first arrival time. We see that the event T1 > t, the event that you
have to wait more than t to get the first email, is the same as the
event Nt = 0, which is the event that the number of emails in the first
time interval of length t is 0. We can solve for the distribution of T1.

P (T1 > t) = P (Nt = 0) = e
−λt −→ P (T1 ≤ t) = 1− e−λt

Thus we have T1 ∼ Expo(λ). And similarly, the interarrival times
between arrivals are all Expo(λ), (e.g. Ti − Ti−1 ∼ Expo(λ)).

Order Statistics
Definition - Let’s say you have n i.i.d. random variables
X1, X2, X3, . . . Xn. If you arrange them from smallest to largest, the
ith element in that list is the ith order statistic, denoted X(i). X(1) is
the smallest out of the set of random variables, and X(n) is the largest.

Properties - The order statistics are dependent random variables.
The smallest value in a set of random variables will always vary and
itself has a distribution. For any value of X(i), X(i+1) ≥ X(j).

Distribution - Taking n i.i.d. random variables X1, X2, X3, . . . Xn
with CDF F (x) and PDF f(x), the CDF and PDF of X(i) are as
follows:

FX(i)
(x) = P (X(j) ≤ x) =

n∑
k=i

(n
k

)
F (x)

k
(1− F (x))

n−k

fX(i)
(x) = n

(n− 1

i− 1

)
F (x)

i−1
(1− F (X))

n−i
f(x)

Universality of the Uniform - We can also express the distribution
of the order statistics of n i.i.d. random variables X1, X2, X3, . . . Xn
in terms of the order statistics of n uniforms. We have that

F (X(j)) ∼ U(j)

Beta Distribution as Order Statistics of Uniform - The smallest
of three Uniforms is distributed U(1) ∼ Beta(1, 3). The middle of three
Uniforms is distributed U(2) ∼ Beta(2, 2), and the largest

U(3) ∼ Beta(3, 1). The distribution of the the jth order statistic of n
i.i.d Uniforms is:

U(j) ∼ Beta(j, n− j + 1)

fU(j)
(u) =

n!

(j − 1)!(n− j)!
t
j−1

(1− t)n−j

Conditional Expectation and Variance

Conditional Expectation
Conditioning on an Event - We can find the expected value of Y
given that event A or X = x has occurred. This would be finding the
values of E(Y |A) and E(Y |X = x). Note that conditioning in an event
results in a number. Note the similarities between regularly finding
expectation and finding the conditional expectation. The expected
value of a dice roll given that it is prime is 1

3 2 + 1
3 3 + 1

3 5 = 3 1
3 . The

expected amount of time that you have to wait until the shuttle comes
(assuming that the waiting time is ∼ Expo( 1

10 )) given that you have
already waited n minutes, is 10 more minutes by the memoryless
property.

Discrete Y Continuous Y

E(Y ) =
∑
y yP (Y = y) E(Y ) =

∫∞
−∞ yfY (y)dy

E(Y |X = x) =
∑
y yP (Y = y|X = x) E(Y |X = x) =

∫∞
−∞ yfY |X(y|x)dy

E(Y |A) =
∑
y yP (Y = y|A) E(Y |A) =

∫∞
−∞ yf(y|A)dy

Conditioning on a Random Variable - We can also find the
expected value of Y given the random variable X. The resulting
expectation, E(Y |X) is not a number but a function of the random
variable X. For an easy way to find E(Y |X), find E(Y |X = x) and
then plug in X for all x. This changes the conditional expectation of Y
from a function of a number x, to a function of the random variable X.

Properties of Conditioning on Random Variables

1. E(Y |X) = E(Y ) if X ⊥⊥ Y
2. E(h(X)|X) = h(X) (taking out what’s known).

E(h(X)W |X) = h(X)E(W |X)

3. E(E(Y |X)) = E(Y ) (Adam’s Law, aka Law of Iterated
Expectation of Law of Total Expectation)

Law of Total Expectation (also Adam’s law) - For any set of
events that partition the sample space, A1, A2, . . . , An or just simply
A,Ac, the following holds:

E(Y ) = E(Y |A)P (A) + E(Y |Ac)P (A
c
)

E(Y ) = E(Y |A1)P (A1) + · · ·+ E(Y |An)P (An)

Conditional Variance
Eve’s Law (aka Law of Total Variance)

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X))

MVN, LLN, CLT

Law of Large Numbers (LLN)
Let us have X1, X2, X3 . . . be i.i.d.. We define

X̄n =
X1+X2+X3+···+Xn

n The Law of Large Numbers states that as

n −→ ∞, X̄n −→ E(X).

Central Limit Theorem (CLT)

Approximation using CLT
We use ∼̇ to denote is approximately distributed. We can use the
central limit theorem when we have a random variable, Y that is a
sum of n i.i.d. random variables with n large. Let us say that
E(Y ) = µY and Var(Y ) = σ2

Y . We have that:

Y ∼̇N (µY , σ
2
Y )

When we use central limit theorem to estimate Y , we usually have
Y = X1 +X2 + · · ·+Xn or Y = X̄n = 1

n (X1 +X2 + · · ·+Xn).

Specifically, if we say that each of the iid Xi have mean µX and σ2
X ,

then we have the following approximations.

X1 +X2 + · · ·+Xn ∼̇N (nµX , nσ
2
X)

X̄n =
1

n
(X1 +X2 + · · ·+Xn) ∼̇N (µX ,

σ2
X

n
)

Asymptotic Distributions using CLT

We use
d−→ to denote converges in distribution to as n −→ ∞. These

are the same results as the previous section, only letting n −→ ∞ and
not letting our normal distribution have any n terms.

1

σ
√
n

(X1 + · · ·+Xn − nµX)
d−→ N (0, 1)

X̄n − µX
σ/
√
n

d−→ N (0, 1)

Markov Chains

Definition
A Markov Chain is a walk along a (finite or infinite, but for this class
usually finite) discrete state space {1, 2, . . . , M}. We let Xt denote
which element of the state space the walk is on at time t. The Markov
Chain is the set of random variables denoting where the walk is at all
points in time, {X0, X1, X2, . . . }, as long as if you want to predict
where the chain is at at a future time, you only need to use the present
state, and not any past information. In other words, the given the
present, the future and past are conditionally independent. Formal
Definition:

P (Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn = i) = P (Xn+1 = j|Xn = i)

State Properties
A state is either recurrent or transient.

• If you start at a Recurrent State, then you will always return
back to that state at some point in the future. ♪You can
check-out any time you like, but you can never leave. ♪

• Otherwise you are at a Transient State. There is some
probability that once you leave you will never return. ♪You
don’t have to go home, but you can’t stay here. ♪

A state is either periodic or aperiodic.

• If you start at a Periodic State of period k, then the GCD of
all of the possible number steps it would take to return back is
> 1.

• Otherwise you are at an Aperiodic State. The GCD of all of
the possible number of steps it would take to return back is 1.



Transition Matrix
Element qij in square transition matrix Q is the probability that the
chain goes from state i to state j, or more formally:

qij = P (Xn+1 = j|Xn = i)

To find the probability that the chain goes from state i to state j in m
steps, take the (i, j)th element of Qm.

q
(m)
ij = P (Xn+m = j|Xn = i)

If X0 is distributed according to row-vector PMF ~p (e.g.
pj = P (X0 = ij)), then the PMF of Xn is ~pQn.

Chain Properties
A chain is irreducible if you can get from anywhere to anywhere. An
irreducible chain must have all of its states recurrent. A chain is
periodic if any of its states are periodic, and is aperiodic if none of
its states are periodic. In an irreducible chain, all states have the same
period.
A chain is reversible with respect to ~s if siqij = sjqji for all i, j. A
reversible chain running on ~s is indistinguishable whether it is running
forwards in time or backwards in time. Examples of reversible chains
include random walks on undirected networks, or any chain with
qij = qji, where the Markov chain would be stationary with respect to
~s = ( 1

M , 1
M , . . . , 1

M ).
Reversibility Condition Implies Stationarity - If you have a PMF
~s on a Markov chain with transition matrix Q, then siqij = sjqji for
all i, j implies that s is stationary.

Stationary Distribution
Let us say that the vector ~p = (p1, p2, . . . , pM ) is a possible and valid
PMF of where the Markov Chain is at at a certain time. We will call
this vector the stationary distribution, ~s, if it satisfies ~sQ = ~s. As a
consequence, if Xt has the stationary distribution, then all future
Xt+1, Xt+2, . . . also has the stationary distribution.
For irreducible, aperiodic chains, the stationary distribution exists, is
unique, and si is the long-run probability of a chain being at state i.
The expected number of steps to return back to i starting from i is
1/si To solve for the stationary distribution, you can solve for
(Q′ − I)(~s)′ = 0. The stationary distribution is uniform if the columns
of Q sum to 1.

Random Walk on Undirected Network
If you have a certain number of nodes with edges between them, and a
chain can pick any edge randomly and move to another node, then this
is a random walk on an undirected network. The stationary
distribution of this chain is proportional to the degree sequence. The
degree sequence is the vector of the degrees of each node, defined as
how many edges it has.

Continuous Distributions

Uniform
Let us say that U is distributed Unif(a, b). We know the following:

Properties of the Uniform For a uniform distribution, the
probability of an draw from any interval on the uniform is proportion
to the length of the uniform. The PDF of a Uniform is just a constant,
so when you integrate over the PDF, you will get an area proportional
to the length of the interval.

Example William throws darts really badly, so his darts are uniform
over the whole room because they’re equally likely to appear anywhere.
William’s darts have a uniform distribution on the surface of the room.
The uniform is the only distribution where the probably of hitting in
any specific region is proportion to the area/length/volume of that
region, and where the density of occurrence in any one specific spot is
constant throughout the whole support.

Normal
Let us say that X is distributed N (µ, σ2). We know the following:

Central Limit Theorem The Normal distribution is ubiquitous
because of the central limit theorem, which states that averages of
independent identically-distributed variables will approach a normal
distribution regardless of the initial distribution.

Transformable Every time we stretch or scale the normal
distribution, we change it to another normal distribution. If we add c
to a normally distributed random variable, then its mean increases
additively by c. If we multiply a normally distributed random variable
by c, then its variance increases multiplicatively by c2. Note that for
every normally distributed random variable X ∼ N (µ, σ2), we can
transform it to the standard N (0, 1) by the following transformation:

X − µ
σ

∼ N (0, 1)

Example Heights are normal. Measurement error is normal. By the
central limit theorem, the sampling average from a population is also
normal.

Standard Normal - The Standard Normal, denoted Z, is
Z ∼ N (0, 1)

CDF - It’s too difficult to write this one out, so we express it as the
function Φ(x)

Exponential Distribution
Let us say that X is distributed Expo(λ). We know the following:

Story You’re sitting on an open meadow right before the break of
dawn, wishing that airplanes in the night sky were shooting stars,
because you could really use a wish right now. You know that shooting
stars come on average every 15 minutes, but it’s never true that a
shooting star is ever ‘’due” to come because you’ve waited so long.
Your waiting time is memorylessness, which means that the time until
the next shooting star comes does not depend on how long you’ve
waited already.

Example The waiting time until the next shooting star is distributed
Expo(4). The 4 here is λ, or the rate parameter, or how many
shooting stars we expect to see in a unit of time. The expected time
until the next shooting star is 1

λ , or 1
4 of an hour. You can expect to

wait 15 minutes until the next shooting star.

Expos are rescaled Expos

Y ∼ Expo(λ)→ X = λY ∼ Expo(1)

Memorylessness The Exponential Distribution is the sole
continuous memoryless distribution. This means that it’s always “as
good as new”, which means that the probability of it failing in the
next infinitesimal time period is the same as any infinitesimal time
period. This means that for an exponentially distributed X and any
real numbers t and s,

P (X > s+ t|X > s) = P (X > t)

Given that you’ve waited already at least s minutes, the probability of
having to wait an additional t minutes is the same as the probability
that you have to wait more than t minutes to begin with. Here’s
another formulation.

X − a|X > a ∼ Expo(λ)

Example - If waiting for the bus is distributed exponentially with
λ = 6, no matter how long you’ve waited so far, the expected
additional waiting time until the bus arrives is always 1

6 , or 10
minutes. The distribution of time from now to the arrival is always the
same, no matter how long you’ve waited.

Min of Expos If we have independent Xi ∼ Expo(λi), then
min(X1, . . . , Xk) ∼ Expo(λ1 + λ2 + · · ·+ λk).

Max of Expos If we have i.i.d. Xi ∼ Expo(λ), then
max(X1, . . . , Xk) ∼ Expo(kλ) + Expo((k − 1)λ) + · · ·+ Expo(λ)

Gamma Distribution
Let us say that X is distributed Gamma(a, λ). We know the following:

Story You sit waiting for shooting stars, and you know that the
waiting time for a star is distributed Expo(λ). You want to see “a”
shooting stars before you go home. X is the total waiting time for the
ath shooting star.

Example You are at a bank, and there are 3 people ahead of you.
The serving time for each person is distributed Exponentially with
mean of 2 time units. The distribution of your waiting time until you
begin service is Gamma(3, 1

2 )

Beta Distribution
Conjugate Prior of the Binomial A prior is the distribution of a
parameter before you observe any data (f(x)). A posterior is the
distribution of a parameter after you observe data y (f(x|y)). Beta is
the conjugate prior of the Binomial because if you have a
Beta-distributed prior on p (the parameter of the Binomial), then the
posterior distribution on p given observed data is also
Beta-distributed. This means, that in a two-level model:

X|p ∼ Bin(n, p)

p ∼ Beta(a, b)

Then after observing the value X = x, we get a posterior distribution
p|(X = x) ∼ Beta(a+ x, b+ n− x)

Order statistics of the Uniform See Order Statistics

Relationship with Gamma This is the bank-post office result. See
Reasoning by Representation

χ2 Distribution

Let us say that X is distributed χ2
n. We know the following:

Story A Chi-Squared(n) is a sum of n independent squared normals.

Example The sum of squared errors are distributed χ2
n

Properties and Representations

E(χ
2
n) = n, V ar(X) = 2n, χ

2
n ∼ Gamma

(
n

2
,

1

2

)
χ
2
n = Z

2
1 + Z

2
2 + · · ·+ Z

2
n, Z ∼

i.i.d. N (0, 1)

Discrete Distributions

DWR = Draw w/ replacement, DWoR = Draw w/o replacement

DWR DWoR

Fixed # trials (n) Binom/Bern HGeom
(Bern if n = 1)

Draw ’til k success NBin/Geom NHGeom
(Geom if k = 1) (see example probs)

Bernoulli
The Bernoulli distribution is the simplest case of the Binomial
distribution, where we only have one trial, or n = 1. Let us say that X
is distributed Bern(p). We know the following:

Story. X “succeeds” (is 1) with probability p, and X “fails” (is 0)
with probability 1− p.

Example. A fair coin flip is distributed Bern( 1
2 ).



Binomial
Let us say that X is distributed Bin(n, p). We know the following:

Story X is the number of ”successes” that we will achieve in n
independent trials, where each trial can be either a success or a failure,
each with the same probability p of success. We can also say that X is
a sum of multiple independent Bern(p) random variables. Let
X ∼ Bin(n, p) and Xj ∼ Bern(p), where all of the Bernoullis are
independent. We can express the following:

X = X1 +X2 +X3 + · · ·+Xn

Example If Jeremy Lin makes 10 free throws and each one
independently has a 3

4 chance of getting in, then the number of free

throws he makes is distributed Bin(10, 3
4 ), or, letting X be the number

of free throws that he makes, X is a Binomial Random Variable
distributed Bin(10, 3

4 ).

Binomial Coefficient
(n
k

)
is a function of n and k and is read n

choose k, and means out of n possible indistinguishable objects, how
many ways can I possibly choose k of them? The formula for the
binomial coefficient is: (n

k

)
=

n!

k!(n− k)!

Geometric
Let us say that X is distributed Geom(p). We know the following:

Story X is the number of “failures” that we will achieve before we
achieve our first success. Our successes have probability p.

Example If each pokeball we throw has a 1
10 probability to catch

Mew, the number of failed pokeballs will be distributed Geom( 1
10 ).

First Success
Equivalent to the geometric distribution, except it counts the total
number of “draws” until the first success. This is 1 more than the
number of failures. If X ∼ FS(p) then E(X) = 1/p.

Negative Binomial
Let us say that X is distributed NBin(r, p). We know the following:

Story X is the number of “failures” that we will achieve before we
achieve our rth success. Our successes have probability p.

Example Thundershock has 60% accuracy and can faint a wild
Raticate in 3 hits. The number of misses before Pikachu faints
Raticate with Thundershock is distributed NBin(3, .6).

Hypergeometric
Let us say that X is distributed HGeom(w, b, n). We know the
following:

Story In a population of b undesired objects and w desired objects,
X is the number of “successes” we will have in a draw of n objects,
without replacement.

Example 1) Let’s say that we have only b Weedles (failure) and w
Pikachus (success) in Viridian Forest. We encounter n Pokemon in the
forest, and X is the number of Pikachus in our encounters. 2) The
number of aces that you draw in 5 cards (without replacement). 3)
You have w white balls and b black balls, and you draw b balls. You
will draw X white balls. 4) Elk Problem - You have N elk, you capture
n of them, tag them, and release them. Then you recollect a new
sample of size m. How many tagged elk are now in the new sample?

PMF The probability mass function of a Hypergeometric:

P (X = k) =

(w
k

)( b
n−k

)(w+b
n

)

Poisson
Let us say that X is distributed Pois(λ). We know the following:

Story There are rare events (low probability events) that occur many
different ways (high possibilities of occurences) at an average rate of λ
occurrences per unit space or time. The number of events that occur
in that unit of space or time is X.

Example A certain busy intersection has an average of 2 accidents
per month. Since an accident is a low probability event that can
happen many different ways, the number of accidents in a month at
that intersection is distributed Pois(2). The number of accidents that
happen in two months at that intersection is distributed Pois(4)

Multivariate Distributions

Multinomial
Let us say that the vector ~X = (X1, X2, X3, . . . , Xk) ∼ Multk(n, ~p)
where ~p = (p1, p2, . . . , pk).

Story - We have n items, and then can fall into any one of the k
buckets independently with the probabilities ~p = (p1, p2, . . . , pk).

Example - Let us assume that every year, 100 students in the Harry
Potter Universe are randomly and independently sorted into one of
four houses with equal probability. The number of people in each of
the houses is distributed Mult4(100, ~p), where ~p = (.25, .25, .25, .25).
Note that X1 +X2 + · · ·+X4 = 100, and they are dependent.

Multinomial Coefficient The number of permutations of n objects
where you have n1, n2, n3 . . . , nk of each of the different variants is the
multinomial coefficient.( n

n1n2 . . . nk

)
=

n!

n1!n2! . . . nk!

Joint PMF - For n = n1 + n2 + · · ·+ nk

P ( ~X = ~n) =
( n

n1n2 . . . nk

)
p
n1
1 p

n2
2 . . . p

nk
k

Lumping - If you lump together multiple categories in a multinomial,
then it is still multinomial. A multinomial with two dimensions
(success, failure) is a binomial distribution.

Variances and Covariances - For
(X1, X2, . . . , Xk) ∼ Multk(n, (p1, p2, . . . , pk)), we have that
marginally Xi ∼ Bin(n, pi) and hence Var(Xi) = npi(1− pi). Also, for
i 6= j, Cov(Xi, Xj) = −npipj , which is a result from class.

Marginal PMF and Lumping

Xi ∼ Bin(n, pi)

Xi +Xj ∼ Bin(n, pi + pj)

X1,X2,X3∼Mult3(n,(p1,p2,p3))→X1,X2+X3∼Mult2(n,(p1,p2+p3))

X1, . . . , Xk−1|Xk = nk ∼ Multk−1

(
n− nk,

(
p1

1− pk
, . . . ,

pk−1

1− pk

))
Multivariate Uniform
See the univariate uniform for stories and examples. For multivariate
uniforms, all you need to know is that probability is proportional to
volume. More formally, probability is the volume of the region of
interest divided by the total volume of the support. Every point in the
support has equal density of value 1

Total Area .

Multivariate Normal (MVN)
A vector ~X = (X1, X2, X3, . . . , Xk) is declared Multivariate Normal if
any linear combination is normally distributed (e.g.
t1X1 + t2X2 + · · ·+ tkXk is Normal for any constants t1, t2, . . . , tk).
The parameters of the Multivariate normal are the mean vector
~µ = (µ1, µ2, . . . , µk) and the covariance matrix where the (i, j)th entry
is Cov(Xi, Xj). For any MVN distribution: 1) Any sub-vector is also
MVN. 2) If any two elements of a multivariate normal distribution are
uncorrelated, then they are independent. Note that 2) does not apply
to most random variables.

Distribution Properties

Important CDFs
Exponential F (X) = 1− e−λx, x ∈ (0,∞))

Uniform(0, 1) F (X) = x, x ∈ (0, 1)

Poisson Properties (Chicken and Egg Results)
We have X ∼ Pois(λ1) and Y ∼ Pois(λ2) and X ⊥⊥ Y .

1. X + Y ∼ Pois(λ1 + λ2)

2. X|(X + Y = k) ∼ Bin
(
k,

λ1
λ1+λ2

)
3. If we have that Z ∼ Pois(λ), and we randomly and

independently “accept” every item in Z with probability p,
then the number of accepted items Z1 ∼ Pois(λp), and the
number of rejected items Z2 ∼ Pois(λq), and Z1 ⊥⊥ Z2.

Convolutions of Random Variables
A convolution of n random variables is simply their sum.

1. X ∼ Pois(λ1), Y ∼ Pois(λ2),
X ⊥⊥ Y −→ X + Y ∼ Pois(λ1 + λ2)

2. X ∼ Bin(n1, p), Y ∼ Bin(n2, p),
X ⊥⊥ Y −→ X + Y ∼ Bin(n1 + n2, p) Note that Binomial can
thus be thought of as a sum of iid Bernoullis.

3. X ∼ Gamma(n1, λ), Y ∼ Gamma(n2, λ),
X ⊥⊥ Y −→ X + Y ∼ Gamma(n1 + n2, λ) Note that Gamma
can thus be thought of as a sum of iid Expos.

4. X ∼ NBin(r1, p), Y ∼ NBin(r2, p),
X ⊥⊥ Y −→ X + Y ∼ NBin(r1 + r2, p)

5. All of the above are approximately normal when λ, n, r are
large by the Central Limit Theorem.

6. Z1 ∼ N (µ1, σ
2
1), Z2 ∼ N (µ2, σ

2
2),

Z1 ⊥⊥ Z2 −→ Z1 + Z2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Special Cases of Random Variables
1. Bin(1, p) ∼ Bern(p)

2. Beta(1, 1) ∼ Unif(0, 1)

3. Gamma(1, λ) ∼ Expo(λ)

4. χ2
n ∼ Gamma

(
n
2 ,

1
2

)
5. NBin(1, p) ∼ Geom(p)

Reasoning by Representation
Beta-Gamma relationship If X ∼ Gamma(a, λ),
Y ∼ Gamma(b, λ), X ⊥⊥ Y then

• X
X+Y ∼ Beta(a, b)

• X + Y ⊥⊥ X
X+Y

This is also known as the bank-post office result.

Binomial-Poisson Relationship Bin(n, p)→ Pois(λ) as n→∞,
p→ 0, np = λ.

Order Statistics of Uniform U(j) ∼ Beta(j, n− j + 1)

Universality of Uniform For any X with CDF F (x), F (X) ∼ U

Formulas
In general, remember that PDFs integrated (and PMFs summed) over
support equal 1.

Geometric Series

a+ ar + ar
2

+ · · ·+ ar
n−1

=

n−1∑
k=0

ar
k

= a
1− rn

1− r

Exponential Function (ex)

e
x

=

∞∑
n=1

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · = lim

n→∞

(
1 +

x

n

)n



Gamma and Beta Distributions
You can sometimes solve complicated-looking integrals by
pattern-matching to the following:∫ ∞

0

x
t−1

e
−x

dx = Γ(t)

∫ 1

0

x
a−1

(1− x)
b−1

dx =
Γ(a)Γ(b)

Γ(a+ b)

Where Γ(n) = (n− 1)! if n is a positive integer

Bayes’ Billiards (special case of Beta)∫ 1

0

x
k
(1− x)

n−k
dx =

1

(n+ 1)
(n
k

)
Euler’s Approximation for Harmonic Sums

1 +
1

2
+

1

3
+ · · ·+

1

n
≈ logn+ 0.57721 . . .

Stirling’s Approximation

n! ∼
√

2πn

(
n

e

)n
Miscellaneous Definitions

Medians A continuous random variable X has median m if
P (X ≤ m) = 50%
A discrete random variable X has median m if
P (X ≤ m) ≥ 50% and P (X ≥ m) ≥ 50%

Log Statisticians generally use log to refer to ln

i.i.d random variables Independent, identically-distributed random
variables.

Example Problems

Contributions from Sebastian Chiu

Calculating Probability (1)
A textbook has n typos, which are randomly scattered amongst its n
pages. You pick a random page, what is the probability that it has no
typos? Answer - There is a

(
1− 1

n

)
probability that any specific

typo isn’t on your page, and thus a
(
1− 1

n

)n probability that there
are no typos on your page. For n large, this is approximately

e−1 = 1/e by a definition of ex.

Calculating Probability (2)
In a group of n people, what is the expected number of distinct
birthdays (month and day). What is the expected number of birthday
matches? Answer - Let X be the number of distinct birthdays, and
let Ij be the indicator for whether the jth days is represented.

E(Ij) = 1− P (no one born day j) = 1− (364/365)
n

By linearity, E(X) = 365 (1− (364/365)
n

) . Now let Y be the

number of birthday matches and let Ji be the indicator that the ith

pair of people have the same birthday. The probability that any two

people share a birthday is 1/365 so E(Y ) =
(n

2

)
/365 .

Linearity of Expectation
This problem is commonly known as the hat-matching problem. n
people have n hats each. At the end of the party, they each leave with
a random hat. What is the expected number of people that leave with
the right hat? Answer - Each hat has a 1/n chance of going to the
right person. By linearity of expectation, the average number of hats

that go to their owners is n(1/n) = 1 .

First Success and Linearity of Expectation
This problem is commonly known as the coupon collector problem.
There are n total coupons, and each draw, you get a random coupon.
What is the expected number of coupons needed until you have a
complete set? Answer - Let N be the number of coupons needed; we
want E(N). Let N = N1 + · · ·+Nn, N1 is the draws to draw our first
distinct coupon, N2 is the additional draws needed to draw our second
distinct coupon and so on. By the story of First Success,
N2 ∼ FS((n− 1)/n) (after collecting first coupon type, there’s
(n− 1)/n chance you’ll get something new). Similarly,
N3 ∼ FS((n− 2)/n), and Nj ∼ FS((n− j + 1)/n). By linearity,

E(N) = E(N1) + · · ·+ E(Nn) =
n

n
+

n

n− 1
+ · · ·+

n

1
= n

n∑
j=1

1

j

Which is approximately n log(n) by Euler’s approximation for
harmonic sums.

First Step Conditioning
In every time period, Bobo the amoeba can die, live, or split into two
amoebas with probabilities 0.25, 0.25, and 0.5, respectively. All of
Bobo’s offspring have the same probabilities. Find P (D), the
probability that Bobo’s lineage eventually dies out. Answer - We use
law of probability, and define the events B0, B1. and B2 where Bi
means that Bobo has split into i amoebas. We note that P (D|B0) = 1
since his lineage has died, P (D|B1) = P (D), and P (D|B2) = P (D)2

since both lines of his lineage must die out in order for Bobo’s lineage
to die out.

P (D) = 0.25P (D|B0) + 0.25P (D|B1) + 0.5P (D|B2)

= 0.25 + 0.25P (D) + 0.5P (D)
2

Solving the quadratic equation, we get that P (D) = 0.5 or 1. We
dismiss 1 as an extraneous solution since the expected number of

Bobos increase every generation. Thus our answer is P (D) = 0.5

Orderings of i.i.d. random variables
I call 2 UberX’s and 3 Lyfts at the same time. If the time it takes for
the rides to reach me is i.i.d., what is the probability that all the Lyfts
will arrive first? Answer - since the arrival times of the five cars are
i.i.d., all 5! orderings of the arrivals are equally likely. There are 3!2!
orderings that involve the Lyfts arriving first, so the probability that

the Lyfts arrive first is
3!2!

5!
= 1/10 . Alternatively, there are

(5
3

)
ways to choose 3 of the 5 slots for the Lyfts to occupy, where each of
the choices are equally likely. 1 of those choices have all 3 of the Lyfts

arriving first, thus the probability is 1/
(5

3

)
= 1/10

Expectation of Negative Hypergeometric
What is the expected number of cards that you draw before you pick
your first Ace in a shuffled deck? Answer - Consider a non-Ace.
Denote this to be card j. Let Ij be the indicator that card j will be
drawn before the first Ace. Note that if j is before all 4 of the Aces in
the deck, then Ij = 1. The probability that this occurs is 1/5, because
out of 5 cards (the 4 Aces and the not Ace), the probability that the
not Ace comes first is 1/5. 1/5 here is the probability that any specific
non-Ace will appear before all of the Aces in the deck. (e.g. the
probability that the Jack of Spades appears before all of the Aces).
Thus let X be the number of cards that is drawn before the first Ace.
Then X = I1 + I2 + ...+ I48, where each indicator correspond to one
of the 48 not Aces. Thus,

E(X) = E(I1) + E(I2) + ...+ E(I48) = 48/5 = 9.6

.

Minimum and Maximum of Random Variables
What is the CDF of the maximum of n independent
Uniformly-distributed random variables? Answer - Note that

P (min(X1, X2, . . . , Xn) ≥ a) = P (X1 ≥ a,X2 ≥ a, . . . , Xn ≥ a)

Similarily,

P (max(X1, X2, . . . , Xn) ≤ a) = P (X1 ≤ a,X2 ≤ a, . . . , Xn ≤ a)

We will use that principal to find the CDF of U(n), where
U(n) = max(U1, U2, . . . , Un) where Ui ∼ Unif(0, 1) (iid).

P (max(U1, U2, . . . , Un) ≤ a) = P (U1 ≤ a, U2 ≤ a, . . . , Un ≤ a)

= P (U1 ≤ a)P (U2 ≤ a) . . . P (Un ≤ a)

= a
n

Pattern Matching with ex Taylor Series

For X ∼ Pois(λ), find E

(
1

X + 1

)
. Answer - By LOTUS,

E

(
1

X + 1

)
=

∞∑
k=0

1

k + 1

e−λλk

k!
=
e−λ

λ

∞∑
k=0

λk+1

(k + 1)!
=

e−λ

λ
(e
λ − 1)

Adam and Eve’s Laws
William really likes speedsolving Rubik’s Cubes. But he’s pretty bad
at it, so sometimes he fails. On any given day, William will attempt
N ∼ Geom(s) Rubik’s Cubes. Suppose each time, he has a
independent probability p of solving the cube. Let T be the number of
Rubik’s Cubes he solves during a day. Find the mean and variance of
T . Answer - Note that T |N ∼ Bin(N, p). As a result, we have by
Adam’s Law that

E(T ) = E(E(T |N)) = E(Np) =
p(1− s)

s

Similarly, by Eve’s Law, we have that

Var(T ) = E(Var(T |N)) + Var(E(T |N)) = E(Np(1− p)) + Var(Np)

=
p(1− p)(1− s)

s
+
p2(1− s)

s2
=

p(1− s)(p+ s(1− p))
s2

MGF - Distribution Matching
(Referring to the Rubik’s Cube question above) Find the MGF of T .
What is the name of this distribution and its parameter(s)? Answer -
By Adam’s Law, we have that

E(e
tT

) = E(E(e
tT |N)) = E((pe

t
+ q)

N
) = s

∞∑
n=0

(pe
t

+ 1− p)n(1− s)n

=
s

1− (1− s)(pet + 1− p)
=

s

s+ (1− s)p− (1− s)pet

Intuitively, we would expect that T is distributed Geometrically
because T is just a filtered version of N , which itself is Geometrically
distributed. The MGF of a Geometric random variable X ∼ Geom(θ)
is

E(e
tX

) =
θ

1− (1− θ)et
So, we would want to try to get our MGF into this form to identify
what θ is. Taking our original MGF, it would appear that dividing by
s+ (1− s)p would allow us to do this. Therefore, we have that

E(etT ) =
s

s+ (1− s)p− (1− s)pet
=

s
s+(1−s)p

1− (1−s)p
s+(1−s)p e

t

By pattern-matching, it thus follows that T ∼ Geom(θ) where

θ =
s

s+ (1− s)p



MGF - Finding Momemts
Find E(X3) for X ∼ Expo(λ) using the MGF of X. Answer - The
MGF of an Expo(λ) is M(t) = λ

λ−t . To get the third moment, we can

take the third derivative of the MGF and evaluate at t = 0:

E(X
3
) =

6

λ3

But a much nicer way to use the MGF here is via pattern recognition:
note that M(t) looks like it came from a geometric series:

1

1− t
λ

=

∞∑
n=0

(
t

λ

)n
=

∞∑
n=0

n!

λn
tn

n!

The coefficient of t
n

n! here is the nth moment of X, so we have

E(Xn) = n!
λn for all nonnegative integers n. So again we get the same

answer.

Markov Chains
Suppose Xn is a two-state Markov chain with transition matrix

Q =

( 0 1

0 1− α α
1 β 1− β

)
Find the stationary distribution ~s = (s0, s1) of Xn by solving ~sQ = ~s,
and show that the chain is reversible under this stationary
distribution. Answer - By solving ~sQ = ~s, we have that

s0 = s0(1− α) + s1β and s1 = s0(α) + s0(1− β)

And by solving this system of linear equations it follows that

~s =

(
β

α+ β
,

α

α+ β

)
To show that this chain is reversible under this stationary distribution,
we must show siqij = sjqji for all i, j. This is done if we can show
s0q01 = s1q10. Indeed,

s0q01 =
αβ

α+ β
= s1q10

thus our chain is reversible under the stationary distribution.

Markov Chains, continued
William and Sebastian play a modified game of Settlers of Catan,
where every turn they randomly move the robber (which starts on the
center tile) to one of the adjacent hexagons.

Robber

a) Is this Markov Chain irreducible? Is it aperiodic? Answer -

Yes to both The Markov Chain is irreducible because it can

get from anywhere to anywhere else. The Markov Chain is also
aperiodic because the robber can return back to a square in
2, 3, 4, 5, . . . moves. Those numbers have a GCD of 1, so the
chain is aperiodic.

b) What is the stationary distribution of this Markov Chain?
Answer - Since this is a random walk on an undirected graph,
the stationary distribution is proportional to the degree
sequence. The degree for the corner pieces is 3, the degree for
the edge pieces is 4, and the degree for the center pieces is 6.
To normalize this degree sequence, we divide by its sum. The
sum of the degrees is 6(3) + 6(4) + 7(6) = 72. Thus the
stationary probability of being on a corner is 3/84 = 1/28, on
an edge is 4/84 = 1/21, and in the center is 6/84 = 1/14.

c) What fraction of the time will the robber be in the center tile

in this game? Answer - From above, 1/14 .

d) What is the expected amount of moves it will take for the
robber to return? Answer - Since this chain is irreducible and
aperiodic, to get the expected time to return we can just invert

the stationary probability. Thus on average it will take 14

turns for the robber to return to the center tile.

Problem Solving Strategies

Contributions from Jessy Hwang, Yuan Jiang, Yuqi Hou

1. Getting Started. Start by defining events and/or defining
random variables. (”Let A be the event that I pick the fair
coin”; “Let X be the number of successes.”) Clear notion =
clear thinking! Then decide what it is that you’re supposed to
be finding, in terms of your location (“I want to find
P (X = 3|A)”). Try simple and extreme cases. To make an
abstract experiment more concrete, try drawing a picture or
making up numbers that could have happened. Pattern
recognition: does the structure of the problem resemble
something we’ve seen before.

2. Calculating Probability of an Event. Use combinatorics if
the naive definition of probability applies. Look for symmetries
or something to condition on, then apply Bayes’ rule or LoTP.
Is the probability of the complement easier to find?

3. Finding the distribution of a random variable. Check the
support of the random variable: what values can it take on?
Use this to rule out distributions that don’t fit. - Is there a
story for one of the named distributions that fits the problem
at hand? - Can you write the random variable as a function of
a r.v. with a known distribution, say Y = g(X)? Then work
directly from the definition of PDF or PMF, expressing
P (Y ≤ y) or P (Y = y) in terms of events involving X only. -
For PDFs, find the CDF first and then differentiate. - If you’re
trying to find the joint distribution of two independent random
variables, just multiple their marginal probabilities - Do you
need the distribution? If the question only asks for the
expected value of X, you might be able to find this without
knowing the entire distirbution of X. See the next item.

4. Calculating Expectation. If it has a named distribution,
check out the table of distributions. If its a function of a r.v.
with a named distribution, try LotUS. If its a count of
something, try breaking it up into indicator random variables.
If you can condition on something, consider using Adam’s law.
Also consider the variance formula.

5. Calculating Variance. Consider independence, named
distributions, and LotUS. If it’s a count of something, break it
up into a sum of indicator random variables. If you can
condition on something, consider using Eve’s Law.

6. Calculating E(X2) - Do you already know E(X) or Var(X)?
Remember that Var(X) = E(X2)− E(X)2.

7. Calculating Covariance If it’s a count of something, break it
up into a sum of indicator random variables. If you’re trying to
calculate the covariance between two components of a
multinomial distribution, Xi, Xj , then the covariance is
−npipj .

8. If X and Y are i.i.d., have you considered using symmetry?
9. Calculating Probabilities of Orderings of Random

Variables Have you considered looking at order statistics? -
Remember any ordering of i.i.d. random variables is equally
likely.

10. Is this the birthday problem? Is this a multinomial problem?
11. Determining Independence Use the definition of

independence. Think of extreme cases to see if you can find a
counterexample.

12. Does something look like Simpson’s Paradox? make sure you’re
looking at 3 events.

13. Find the PDF. If the question gives you two r.v., where you
know the PDF of one r.v. and the other r.v. is a function of the
first one, then the problem wants you to use a transformation
of variables (Jacobian). You can also find the pdf by
differentiating the CDF.

14. Do a painful integral. If your integral looks painful, see if
you can write your integral in terms of a PDF (like Gamma or
Beta), so that the integral equals 1.

15. Before moving on. Plug in some simple and extreme cases to
make sure that your answer makes sense.

Biohazards

Section author: Jessy Hwang

1. Don’t misuse the native definition of probability - When
answering “What is the probability that in a group of 3 people,
no two have the same birth month?”, it is not correct to treat
the people as indistinguishable balls being placed into 12 boxes,
since that assumes the list of birth months {January, January,
January} is just as likely as the list {January, April, June},
when the latter is fix times more likely.

2. Don’t confuse unconditional and conditional
probabilities, or go in circles with Baye’s Rule -

P (A|B) =
P (B|A)P (A)

P (B)
. It is not correct to say “P (B) = 1

because we know that B happened.”; P(B) is the probability
before we have information about whether B happened. It is
not correct to use P (A|B) in place of P (A) on the right-hand
side.

3. Don’t assume independence without justification - In the
matching problem, the probability that card 1 is a match and
card 2 is a match is not 1/n2. - The Binomial and
Hypergeometric are often confused; the trials are independent
in the Binomial story and not independent in the
Hypergeometric story due to the lack of replacement.

4. Don’t confuse random variables, numbers, and events. -
Let X be a r.v. Then f(X) is a r.b. for any function f . In
particular, X2, |X|, F (X), and IX>3 are r.v.s.
P (X2 < X|X ≥ 0), E(X),Var(X), and f(E(X)) are numbers.
X = 2 and F (X) ≥ −1 are events. It does not make sense to
write

∫∞
−∞ F (X)dx because F (X) is a random variable. It does

not make sense to write P (X) because X is not an event.
5. A random variable is not the same thing as its

distribution - To get the PDF of X2, you can’t just square the
PDF of X. The right way is to use one variable transformations
- To get the PDF of X + Y , you can’t just add the PDF of X
and the PDF of Y . The right way is to compute the
convolution.

6. E(g(X)) does not equal g(E(X)) in general. - See the St.
Petersburg paradox for an extreme example. - The right way to
find E(g(X)) is with LotUS.

Recommended Resources

• Introduction to Probability (http://bit.ly/introprobability)
• Stat 110 Online (http://stat110.net)
• Stat 110 Quora Blog (https://stat110.quora.com/)
• Stat 110 Course Notes (mxawng.com/stuff/notes/stat110.pdf)
• Quora Probability FAQ (http://bit.ly/probabilityfaq)
• LaTeX File (github.com/wzchen/probability cheatsheet)

Please share this cheatsheet with friends!
http://wzchen.com/probability-cheatsheet

http://bit.ly/introprobability
http://stat110.net
https://stat110.quora.com/
http://www.mxawng.com/stuff/notes/stat110.pdf
http://bit.ly/probabilityfaq
https://github.com/wzchen/probability_cheatsheet
http://wzchen.com/probability-cheatsheet


Distributions

Distribution PDF and Support Expected Value Variance MGF

Bernoulli
Bern(p)

P (X = 1) = p

P (X = 0) = q p pq q + pet

Binomial
Bin(n, p)

P (X = k) =
(n
k

)
pk(1− p)n−k

k ∈ {0, 1, 2, . . . n} np npq (q + pet)n

Geometric
Geom(p)

P (X = k) = qkp

k ∈ {0, 1, 2, . . . } q/p q/p2 p
1−qet , qe

t < 1

Negative Binom.

NBin(r, p)

P (X = n) =
(r+n−1
r−1

)
prqn

n ∈ {0, 1, 2, . . . } rq/p rq/p2 ( p
1−qet )

r, qet < 1

Hypergeometric

HGeom(w, b, n)

P (X = k) =
(
w
k

)(
b

n−k

)
/
(
w+b
n

)
k ∈ {0, 1, 2, . . . , n} µ = nw

b+w
w+b−n
w+b−1

nµ
n
(1− µ

n
) −

Poisson
Pois(λ)

P (X = k) = e−λλk

k!

k ∈ {0, 1, 2, . . . } λ λ eλ(et−1)

Uniform
Unif(a, b)

f(x) = 1
b−a

x ∈ (a, b) a+b
2

(b−a)2

12
etb−eta
t(b−a)

Normal
N (µ, σ2)

f(x) = 1
σ
√

2π
e−(x − µ)2/(2σ2)

x ∈ (−∞,∞) µ σ2 etµ+σ2t2

2

Exponential

Expo(λ)

f(x) = λe−λx

x ∈ (0,∞) 1/λ 1/λ2 λ
λ−t , t < λ

Gamma
Gamma(a, λ)

f(x) = 1
Γ(a)

(λx)ae−λx 1
x

x ∈ (0,∞) a/λ a/λ2

(
λ
λ−t

)a
, t < λ

Beta
Beta(a, b)

f(x) =
Γ(a+b)

Γ(a)Γ(b)
xa−1(1− x)b−1

x ∈ (0, 1) µ = a
a+b

µ(1−µ)
(a+b+1)

−

Chi-Squared

χ2
n

1
2n/2Γ(n/2)

xn/2−1e−x/2

x ∈ (0,∞) n 2n (1− 2t)−n/2, t < 1/2

Multivar Uniform
A is support

f(x) = 1
|A|

x ∈ A − − −

Multinomial
Multk(n, ~p)

P ( ~X = ~n) =
( n
n1...nk

)
pn1

1 . . . p
nk
k

n = n1 + n2 + · · ·+ nk n~p

Var(Xi) = npi(1− pi)
Cov(Xi, Xj) = −npipj

(∑k
i=1 pie

ti
)n

Inequalities
Cauchy-Schwarz Markov Chebychev Jensen

|E(XY )| ≤
√
E(X2)E(Y 2) P (X ≥ a) ≤

E|X|
a

P (|X − µX | ≥ a) ≤
σ2
X

a2
g convex: E(g(X)) ≥ g(E(X))

g concave: E(g(X)) ≤ g(E(X))
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