
Probabilistic Reasoning

Volodymyr Kuleshov

Cornell Tech

Lecture 13

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 1 / 33

Announcements

Due date for Assignment 3 extended to March 20.

Deadline for signing up for presentations will be this Friday.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 2 / 33

Why Are Generative Models Useful?

We want to learn a distribution p(x) with the following features:

Generation: If we sample xnew ∼ p(x), xnew should look like the data
distribution

Density estimation: p(x) should be high if x is from data distribution, and
low otherwise

Unsupervised representation learning: Learning hidden structure
(features) underlying the data

These are practical use cases. Generative models are also an example of a way of
thinking about machine learning and specifying inductive biases.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 3 / 33

Lecture Outline

1 Probabilistic Reasoning

Motivational Example: Modeling Student Grades with Bayes Nets
Probabilistic Approach to Machine Learning, Box’s Loop
In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

2 Deep Generative Models & Probabilistic Modeling

Composing Probabilistic Models with Deep Neural Networks
Examples: GMMs, Deep Kalman Filters

3 Neural Networks & Probabilistic Inference

Black-Box Variational Inference
Implicit Variational Inference

4 Probabilistic Programming

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 4 / 33

Motivational Example: Modeling Student Grades

Suppose we want to build a model that infers the difficulty of a class given
the students’ grades and other data. We have two options:

1 Build a discriminative model p(Difficulty | Data) parameterized by a
black-box model trained using supervised learning.

2 Use a structured generative model to encode our domain knowledge
of how grades, letters, etc. are related to each other:

p(Difficulty | Data) =
p(Difficulty,Data)

p(Data)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 5 / 33

Recall: Bayesian Networks

A Bayesian network is specified by a directed acyclic graph
G = (V ,E) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Defines a joint distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

The graph encodes our knowledge of conditional independencies

Graph provides a compact model representation: model size is
exponential in |Pa(i)|, not |V |

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 6 / 33

Modeling Student Grades with Bayesian Networks

Consider the following model of student performance in a class.

It tells a generative story of the data and incorporates inductive biases
derived from our prior knowledge.

It yields predictions via Bayes’ rule:

p(Diff | Letter,Grade,SAT) =
∑

Intelligence

P(L|G)P(G |D, I)P(S |I)P(D)P(I)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 7 / 33

Discriminative vs. Generative Models

Discriminative and generative models often specify the same (linear)
model family. But they produce different results

In general, discriminative models make fewer assumptions and are
more accurate given enough data.

But if the inductive bias of the generative model is correct, it will
learn faster and with less data.

See Ng and Jordan (2002) for more details.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 8 / 33

Probabilistic Reasoning

Generative models exemplify the probabilistic approach to machine
learning.

In the probabilistic approach, we specify a structured probabilistic
model based on our understanding of the problem.

This approach provides a principled way of specifying prior knowledge
and inductive biases.

It also provides a principled treatment of uncertainty – important for
decision-making, human-in-the-loop AI, etc.

It’s a general philosophy for how to approach and solve ML problems.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 9 / 33

Three Aspects of Probabilistic Reasoning

Probabilistic reasoning is an approach to machine learning in which we
work with structured probabilistic models that encode our understanding
of the problem.

There are three main questions in probabilistic reasoning:

Representation: How do we specify a (possibly latent-variable)
model p(x , z)?

Inference: How do we interrogate the model (e.g., find features
p(z |x), generate from p(x |z))?

Learning: How do we learn p(x , z) from data?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 10 / 33

Box’s Loop

Box’s loop is an iterative process for building probabilistic models.

1 We formulate a model based on our knowledge of problem structure
2 We perform inference and learning and examine the model’s results
3 We critique the model, comparing it against data. We go back to

Step 1 and repeat until we’re satisfied.

Figure by David Blei

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 11 / 33

Example: Topic Modeling

Consider the following scientific paper on computational genomics:

Its contents describe at least three different topics: genetics (yellow),
computers (blue), and biology (pink).

Materials by David Blei

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 12 / 33

Example: Topic Modeling

We want a model that will identify the topics discussed in the article.

Materials by David Blei

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 13 / 33

Example: Topic Modeling

In practice these topics are not observed and we need to infer them

Materials by David Blei

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 14 / 33

Latent Dirichlet Allocation: Representation

Latent Dirichlet Allocation (LDA) defines the following probabilistic model

The model is defined by the following generative story. For each document d :

1 Draw a word distribution βk ∼ Dir(η) for each topic k . Each βk ∈ [0, 1]N is
a categorial distribution over a vocabulary of N words.

2 For each document d :

1 Draw a set of topic proportions θn ∼ Dir(α), θn ∈ [0, 1]K

2 For each word n in the document:
1 Draw a topic index Zd,n ∼ Cat(θd) in 1, 2, ...,K
2 Draw a word from the distribution for that topic Wd,n ∼ Cat(βZd,n)

This defines a latent variable model: p(Wd,n|Zd,n, βk)p(Zd,n|θd)p(θd)p(βk)
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 15 / 33

Latent Dirichlet Allocation: Inference and Learning

How do we fit this model? At least two possible approaches:

Variational Inference: Maximize ELBO to find the variational
posterior q(Z , θ, β|W)

MCMC: Consider the true posterior p(Z , θ, β|W) as an unnormalized
energy based model exp(−E)/Z with energy

E = − log p(Z , θ, β,W)

and an untractable Z = p(W) and apply the sampling-based
techniques for energy-based models that we saw.

We can also learn this model via variational inference or contrastive
divergence with Gibbs sampling.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 16 / 33

Lecture Outline

1 Probabilistic Reasoning

Motivational Example: Modeling Student Grades with Bayes Nets
Probabilistic Approach to Machine Learning, Box’s Loop
In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

2 Deep Generative Models & Probabilistic Modeling

Composing Probabilistic Models with Deep Neural Networks
Examples: GMMs, Deep Kalman Filters

3 Neural Networks & Probabilistic Inference

Black-Box Variational Inference
Implicit Variational Inference

4 Probabilistic Programming

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 17 / 33

Composing Probabilistic Models with Neural Networks

Probabilistic modeling and deep generative models are intimately
connected.

1 Deep generative models are a notable example of the probabilistic
approach (previous section).

2 Deep generative models can serve as composable building blocks
within probabilistic models (this section).

3 Deep neural networks can accelerate and automate inference and
learning in probabilistic models (next section).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 18 / 33

Example: Deep Gaussian Mixture Models

Consider fitting generative models to data shown in (a) (Johnson et al., 2016).

GMM (b): Fits the data but uses too many components

zi ∼ Cat(π) xi |zi , {µk ,Σk}Kk=1 ∼ N (µzi ,Σzi)

VAE (c): Diffuse probability; doesn’t encode structure

zi ∼ N (0, I) xi |zi , θ ∼ N (µθ(zi),Σθ(zi))

GMM+VAE (d): Fits data with correct # of interpretable components.

zi ∼ Cat(π) ui |zi , {νk ,Tk}Kk=1 ∼ N (νzi ,Tzi) xi |ui , θ ∼ N (µθ(ui),Σθ(ui))

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 19 / 33

Example: Learning Deep Gaussian Mixture Models

The GMM+VAE model finds interpretable components like a GMM and supports
non-gaussian data for each component as a VAE.

zi ∼ Cat(π) ui |zi , {νk ,Tk}Kk=1 ∼ N (νzi ,Tzi) xi |ui , θ ∼ N (µθ(ui),Σθ(ui))

How do we perform learning and inference? Use variational inference:

1 For a fixed zi we can fit q(ui |xi) like a VAE

2 For a fixed ui we can fit q(zi |ui) like a GMM

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 20 / 33

Example: Deep Kalman Filtering

We extend GMM+VAE to time series (Johnson et al., 2016; Krishnan et al., 2016).

Suppose we observe a sequence of movie frames xt , t = 1, 2, ...,T .

A video of a mouse running in a cage.

Each xt has a latent representation ut and xt ∼ N (µθ(ut),Σθ(ut))

Latent feature representation of the mouse video frames

The ut have linear dynamics ut+1 = Zztut + Bε, ε ∼ N (0, I)

Latent features evolve smoothly, like the frames

The dynamics Zzt depend on discrete state zt and zt+1 ∼ Cat(πzt)

Discrete, interpretable mouse states (e.g., running; see yellow dot)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 21 / 33

Lecture Outline

1 Probabilistic Reasoning

Motivational Example: Modeling Student Grades with Bayes Nets
Probabilistic Approach to Machine Learning, Box’s Loop
In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

2 Deep Generative Models & Probabilistic Modeling

Composing Probabilistic Models with Deep Neural Networks
Examples: GMMs, Deep Kalman Filters

3 Neural Networks & Probabilistic Inference

Black-Box Variational Inference
Implicit Variational Inference

4 Probabilistic Programming

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 22 / 33

Composing Probabilistic Models with Neural Networks

Probabilistic modeling and deep generative models are intimately
connected.

1 Deep generative models are a notable example of the probabilistic
approach (previous sections).

2 Deep generative models can serve as composable building blocks
within probabilistic models (previous sections).

3 Deep neural networks can accelerate and automate inference and
learning in probabilistic models (this section).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 23 / 33

Classical Approaches to Variational Inference Are Hard

Consider a probabilistic model over x , z defined as

z ∼ p(z) e.g. z ∼ Cat(π),

x |z ∼ p(z |x) e.g. x ∼ N (µz ,Σz)

The classical (pre-2010) approach to learning this model is mean-field
variational inference.

This works only when the model is well-behaved (e.g., conjugate
priors).
The form of p(z |x) needs to be known; q(z |x) must have same form;
this lets us manually derive optimization updates for q.

This is challenging for several reasons

It only works for certain types of models p
It imposes constraints on q (e.g., often q needs to be fully factored)
Deriving the update equations for q is very laborious and error-prone
In practice, mean-field gets stuck in local optima

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 24 / 33

Black-Box Variational Inference (Ranganath et al., 2014)

Consider a probabilistic model over x , z defined as

z ∼ p(z) x |z ∼ p(z |x)

In black-box variational inference, we instead parameterize q(z |x) with a
neural net and optimize the ELBO using SGD.

This can look like VAE; also applies to other models (e.g., discrete z)

Parameterizing q(z |x) with a neural net has many advantages:

Flexiblity: Works for any p(x , z)

Accuracy: q(z |x) is in a flexible class and can produce a tighter
ELBO and approximate p(z |x) better

Easy to deploy: We can fit q(z |x) by optimizing ELBO with SGD.
We don’t need to derive updates for q from p; hence we can perform
VI with any p!

Easy to implement: We can easily implement VI in
Tensorflow/PyTorch – it’s just SGD!

Speed: Can leverage compute such as GPUs to optimize q(z |x).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 25 / 33

Implicit Models

Implicit models are ones that are defined by a (Bayesian) sampling process:

z ∼ p(z) θ ∼ p(θ) x = Gθ(z)

We have a distribution over x , but no closed-form expression for p(x , z , θ).

Example: Lotka-Volterra (predator-prey) equations:

dx

dt
= αx − βy + ε

dy

dt
= δxy − γy + ε

x , y are the number of prey and predators, respectively; α, β, δ, γ are
parameters; we sample initial state x0, y0 from some prior; ε is Gaussian noise

We can easily simulate (x , y)-trajectories but not compute their distribution

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 26 / 33

Implicit Variational Inference

How can we perform inference in implicit models? Treat it like a GAN!

Suppose want to learn q(z |x) and q(θ). Let q(x) denote the empirical
distribution of data {xi}ni=1. We can write the ELBO as:

L =
1

n

n∑
i=1

Eq(θ)q(zi |xi) [log p(xi , zi , θ)− log q(zi |xi)− log q(θ)]

=
1

n

n∑
i=1

Eq(θ)q(zi |xi)

log
p(xi , zi)

q(zi , xi , θ)
+ log q(xi)︸ ︷︷ ︸

const


= Eq(θ)q(zi ,xi)

[
log

p(xi , zi , θ)

q(xi , zi , θ)

]
+ const

If we can estimate the log-ratio log p(xi ,zi ,θ)
q(xi ,zi ,θ)

, we can optimize the ELBO

(Tran et al., 2017).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 27 / 33

Implicit Variational Inference

How do we estimate the log-odds ratio log p(xi ,zi ,θ)
q(xi ,zi ,θ)

?

We train a discriminator σ(r(x , z , θ)) to distinguish between real xi , zi , θ
sampled from p(x , z , θ) and fake ones sampled from q(x , z , θ) (as in
BiGAN), minimizing the cross-entropy

D = Ep(x ,z,θ) [log σ(r(x , z , θ))] + Eq(x ,z,θ) [log(1− σ(r(x , z , θ)))] .

As we saw in our lectures on GANs, the optimal r∗ is

r∗(x , z , θ) = log p(x , z , θ)− log q(x , z , θ).

After we trained r∗, we learn q to optimize our estimate of the ELBO

Eq(xi ,zi ,θ) [r∗(xi , zi , θ)] .

The final estimate of the parameters is given by the approximate Bayesian
posterior q(θ).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 28 / 33

Lecture Outline

1 Probabilistic Reasoning

Motivational Example: Modeling Student Grades with Bayes Nets
Probabilistic Approach to Machine Learning, Box’s Loop
In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

2 Deep Generative Models & Probabilistic Modeling

Composing Probabilistic Models with Deep Neural Networks
Examples: GMMs, Deep Kalman Filters

3 Neural Networks & Probabilistic Inference

Black-Box Variational Inference
Implicit Variational Inference

4 Probabilistic Programming

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 29 / 33

Probabilistic Programming

In probabilistic programming, we specify probabilistic models using
computer programs.

The generative story of our model is specified by an arbitrary
computer program

This is more general that standard math, e.g. can define control flows.
Can represent arbitrary computable data generation processes

In practice, one uses domain-specific languages (PyMC3, Stan,
Edward, Pyro)

Languages provide useful primitives (e.g., probability distributions)
They make it possible to automate inference for a given program

Probabilistic programming holds a lot of promise for advancing ML

Analysts only need to specify the model
Inference engine allows instantly answering arbitrary inference queries
Very promising in science: can quickly experiment with many models

Probabilistic programming is still a very active research area.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 30 / 33

Deep Probabilistic Programming

Probabilistic programming also benefits for recent advances in deep
learning. Modern deep probabilistic programming languages:

Specify the sampling process via a deep neural network

Use deep neural networks for accelerating inference (e.g., using
Implicit VI)

Use existing software and hardware to accelerate development speed
and ease-of-use as well as execution and training speed

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 31 / 33

Edward (Tran et al., 2017)

Edward was an early deep probabilistic programming language built on top
of Tensorflow.

Programs as Tensorflow graphs with random variables at some nodes

Inference engine takes another TF graph for q and automates VI

Representation, inference, learning, sampling is built on top of TF and
can arbitrarily mix neural network and classical components

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 32 / 33

Summary of the Lecture

Generative models are a prominent example of probabilistic reasoning,
a general approach to machine learning

Provides a principled way of specifying inductive biases
Three key tasks: representation, learning, and inference
Box’s loop is a procedure for developing such models

Classical probabilistic models can be composed with neural networks

We can manually encode the structure that we know (e.g., number of
components)
We can let neural nets learn unknown structure (e.g., shape of
components)

Neural networks can also improve inference and learning

By using flexible neural networks for q, we can automate variational
infernece
We can also learn more general models, such as implicit ones

Probabilistic programming provide tools for developing probabilistic
models

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13 33 / 33

