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Announcements

@ Due date for Assignment 3 extended to March 20.

@ Deadline for signing up for presentations will be this Friday.
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We want to learn a distribution p(x) with the following features:

@ Generation: If we sample Xuen ~ p(X), Xnew should look like the data
distribution

o Density estimation: p(x) should be high if x is from data distribution, and
low otherwise

@ Unsupervised representation learning: Learning hidden structure
(features) underlying the data

These are practical use cases. Generative models are also an example of a way of
thinking about machine learning and specifying inductive biases.
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Lecture Outline

@ Probabilistic Reasoning

e Motivational Example: Modeling Student Grades with Bayes Nets
o Probabilistic Approach to Machine Learning, Box's Loop
o In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

@ Deep Generative Models & Probabilistic Modeling

e Composing Probabilistic Models with Deep Neural Networks
o Examples: GMMs, Deep Kalman Filters

© Neural Networks & Probabilistic Inference

e Black-Box Variational Inference
e Implicit Variational Inference

@ Probabilistic Programming
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Motivational Example: Modeling Student Grades

Suppose we want to build a model that infers the difficulty of a class given
the students’ grades and other data. We have two options:
© Build a discriminative model p(Difficulty | Data) parameterized by a
black-box model trained using supervised learning.
@ Use a structured generative model to encode our domain knowledge
of how grades, letters, etc. are related to each other:

p(Difficulty, Data)
p(Data)

p(Difficulty | Data) =
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Recall: Bayesian Networks

o A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
@ One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)),
specifying the variable's probability conditioned on its parents’ values

Defines a joint distribution:

p(x1,...xn) = H p(xi | Xpa(iy)

iev

The graph encodes our knowledge of conditional independencies

Graph provides a compact model representation: model size is
exponential in [Pa(i)|, not |V/|
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Modeling Student Grades with Bayesian Networks

Consider the following model of student performance in a class.
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@ It tells a generative story of the data and incorporates inductive biases
derived from our prior knowledge.

@ |t yields predictions via Bayes' rule:
p(Diff | Letter, Grade, SAT) = Z P(L|G)P(G|D, P(S|HP(D)P(I)

Intelligence
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Discriminative vs. Generative Models

Generative (Naive Bayes) Discriminative (logistic regression)

Discriminative and generative models often specify the same (linear)
model family. But they produce different results

@ In general, discriminative models make fewer assumptions and are
more accurate given enough data.

@ But if the inductive bias of the generative model is correct, it will
learn faster and with less data.

See Ng and Jordan (2002) for more details.
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Probabilistic Reasoning

Generative models exemplify the probabilistic approach to machine
learning.

@ In the probabilistic approach, we specify a structured probabilistic
model based on our understanding of the problem.

@ This approach provides a principled way of specifying prior knowledge
and inductive biases.

@ It also provides a principled treatment of uncertainty — important for
decision-making, human-in-the-loop Al, etc.

@ It's a general philosophy for how to approach and solve ML problems.
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Three Aspects of Probabilistic Reasoning

Probabilistic reasoning is an approach to machine learning in which we
work with structured probabilistic models that encode our understanding
of the problem.

There are three main questions in probabilistic reasoning:
o Representation: How do we specify a (possibly latent-variable)
model p(x,z)?
e Inference: How do we interrogate the model (e.g., find features
p(z|x), generate from p(x|z))?
e Learning: How do we learn p(x, z) from data?
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Box's Loop

Box's loop is an iterative process for building probabilistic models.

Build model Infer hidden quantities Criticize model

Mixtures and mixed-menbership; ™ Markov chain Monte Carlo; I Performance on a task;
Time series; Generalized linear models; Variational inference; Prediction on unseen data;
Factor models; Bayesian nonparametrics Laplace approximation Posterior predictive checks

]

Apply model

Predictive systems;
ata exploration;
Data sumarization

Revise Model

@ We formulate a model based on our knowledge of problem structure

@ We perform inference and learning and examine the model's results

© We critique the model, comparing it against data. We go back to
Step 1 and repeat until we're satisfied.

Figure by David Blei
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Example: Topic Modeling

Consider the following scientific paper on computational genomics:

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Gfganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forflifé]
One research team, using computer analy-
ses to compare known genomes, concluded
that today's[OFGARISMS can he sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The —

e
other researcher mapped genes
in a simple parasite and esti- /
Heemoshis
mated that for this organism, ol
g

800 genes are plenty todothe |
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don't
match precisely, those| predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8o 12

SCIENCE » VOL. 272 * 24 MAY 1996

Its contents describe at least three different topics: genetics (yellow),

computers (blue), and biology (pink).

Materials by David Blei
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
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numbers game, particularly
more genomes are completely mapped and
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Example: Topic

Modeling

We want a model that will identify the topics discussed in the article.

Documents

Topics
gene 0.04
dna 09.02

genetic .01

life  0.02
evolve 9.81
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S

brain 0.04
neuron  0.02
nerve .01
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Example: Topic Modeling

In practice these topics are not observed and we need to infer them

P Topic proportions and
Topics Documents P az si;:? ments
Seeking Life’s Bare (Genetic) N ities
RING HARBOR, NEW YORK— n
\_//_- ,
\__//-
/ * Genome Mapping and Sequenc: —
ina-Cold Spring Hartor New Yok, Sirpping down. Computr analyss 189 an ot
Vayato 17 e o he LT e ang ansent enones.
SCIENCE + VOL 212 + 26 MAY 1990
s
N
/

Materials by David Blei

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2022 Lecture 13




Latent Dirichlet Allocation: Representation

Latent Dirichlet Allocation (LDA) defines the following probabilistic model

Proportions Perword
o opic assignmen

Per-document Observed ) Topic
topic proportions word Topics  parameter

R

orofo-@ @#@

Zin Wan N Br

n
K]

The model is defined by the following generative story. For each document d:

@ Draw a word distribution Sy ~ Dir(n) for each topic k. Each Bk € [0,1]V

a categorial distribution over a vocabulary of N words.
@ For each document d:
© Draw a set of topic proportions 6, ~ Dir(a), 6, € [0,1]¥
@ For each word n in the document:
@ Draw a topic index Zy,, ~ Cat(04) in 1,2,.... K
@ Draw a word from the distribution for that topic Way,, ~ Cat(fz,,)

This defines a latent variable model: p(W4y, 1| Z4.n, Bx)p(Za,n04)p(04)p(Bk)
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Latent Dirichlet Allocation: Inference and Learning

How do we fit this model? At least two possible approaches:

@ Variational Inference: Maximize ELBO to find the variational
posterior q(Z, 6, 3| W)

@ MCMC: Consider the true posterior p(Z, 8, 3|W) as an unnormalized
energy based model exp(—E)/Z with energy

E= —|ogp(Z,0,5, W)

and an untractable Z = p(W) and apply the sampling-based
techniques for energy-based models that we saw.

We can also learn this model via variational inference or contrastive
divergence with Gibbs sampling.
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Lecture Outline

@ Probabilistic Reasoning

e Motivational Example: Modeling Student Grades with Bayes Nets
o Probabilistic Approach to Machine Learning, Box's Loop
o In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

@ Deep Generative Models & Probabilistic Modeling

e Composing Probabilistic Models with Deep Neural Networks
o Examples: GMMs, Deep Kalman Filters

© Neural Networks & Probabilistic Inference

e Black-Box Variational Inference
e Implicit Variational Inference

@ Probabilistic Programming
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Composing Probabilistic Models with Neural Networks

Probabilistic modeling and deep generative models are intimately
connected.

@ Deep generative models are a notable example of the probabilistic
approach (previous section).

@ Deep generative models can serve as composable building blocks
within probabilistic models (this section).

© Deep neural networks can accelerate and automate inference and
learning in probabilistic models (next section).
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Example: Deep Gaussian Mixture Models

S
Ay DY /‘

(a) Data (b) GMM () Density net (VAE) (d) GMM SVAE

Consider fitting generative models to data shown in (a) (Johnson et al., 2016).

@ GMM (b): Fits the data but uses too many components
zj ~ Cat(r) xilzi, (ks Tadier ~ N1z, )
@ VAE (c): Diffuse probability; doesn't encode structure
z; ~N(0,1) xi|zi, 0 ~ N (uo(z), Lo(zi))
© GMM+VAE (d): Fits data with correct # of interpretable components.
zi ~ Cat(n)  ujlzi, {vie, T}y ~ N (v, To)  xiluiy 0 ~ N (po(u;i), Zo(u;)
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Example: Learning Deep Gaussian Mixture Models

The GMM+VAE model finds interpretable components like a GMM and supports
non-gaussian data for each component as a VAE.
zi ~ Cat(m)  uilzi, {vi, Tkt ey ~ N (v, ) xiluin 0 ~ N (po(ui), Zo(uy))
How do we perform learning and inference? Use variational inference:
@ For a fixed z we can fit g(u;|x;) like a VAE
@ For a fixed u; we can fit g(z|u;) like a GMM
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Example: Deep Kalman Filtering

We extend GMM+VAE to time series (Johnson et al., 2016; Krishnan et al., 2016).

(a) Extension into running

(b) Fall from rear

@ Suppose we observe a sequence of movie frames x;, t =1,2,..., T.

e A video of a mouse running in a cage.

@ Each x; has a latent representation u; and x; ~ N (ug(ut), Xo(ut))
o Latent feature representation of the mouse video frames

@ The u; have linear dynamics usy1 = Z,,u; + Be, e ~ N(0, 1)
o Latent features evolve smoothly, like the frames

@ The dynamics Z,, depend on discrete state z; and z;1 ~ Cat(7,,)

o Discrete, interpretable mouse states (e.g., running; see yellow dot)
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Lecture Outline

@ Probabilistic Reasoning

e Motivational Example: Modeling Student Grades with Bayes Nets
o Probabilistic Approach to Machine Learning, Box's Loop
o In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

@ Deep Generative Models & Probabilistic Modeling

e Composing Probabilistic Models with Deep Neural Networks
o Examples: GMMs, Deep Kalman Filters

© Neural Networks & Probabilistic Inference

e Black-Box Variational Inference
e Implicit Variational Inference

@ Probabilistic Programming
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Composing Probabilistic Models with Neural Networks

Probabilistic modeling and deep generative models are intimately
connected.

@ Deep generative models are a notable example of the probabilistic
approach (previous sections).

@ Deep generative models can serve as composable building blocks
within probabilistic models (previous sections).

© Deep neural networks can accelerate and automate inference and
learning in probabilistic models (this section).
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Classical Approaches to Variational Inference Are Hard

Consider a probabilistic model over x, z defined as

z ~ p(z) e.g. z ~ Cat(rm),
x|z ~ p(z|x) eg x~N(uz,X;)

@ The classical (pre-2010) approach to learning this model is mean-field
variational inference.

e This works only when the model is well-behaved (e.g., conjugate
priors).
o The form of p(z|x) needs to be known; g(z|x) must have same form;
this lets us manually derive optimization updates for q.
@ This is challenging for several reasons
It only works for certain types of models p
It imposes constraints on g (e.g., often g needs to be fully factored)
Deriving the update equations for g is very laborious and error-prone
In practice, mean-field gets stuck in local optima
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Black-Box Variational Inference (Ranganath et al., 2014)

Consider a probabilistic model over x, z defined as
2~ p(2) x|z ~ p(z|x)
In black-box variational inference, we instead parameterize g(z|x) with a
neural net and optimize the ELBO using SGD.
@ This can look like VAE; also applies to other models (e.g., discrete z)
Parameterizing q(z|x) with a neural net has many advantages:
e Flexiblity: Works for any p(x, z)
@ Accuracy: g(z|x) is in a flexible class and can produce a tighter
ELBO and approximate p(z|x) better
e Easy to deploy: We can fit g(z|x) by optimizing ELBO with SGD.
We don't need to derive updates for g from p; hence we can perform
VI with any p!
o Easy to implement: We can easily implement VI in
Tensorflow/PyTorch — it's just SGD!
@ Speed: Can leverage compute such as GPUs to optimize g(z|x).
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Implicit Models

Implicit models are ones that are defined by a (Bayesian) sampling process:
z ~ p(z) 0 ~ p(0) x = Gy(z)

We have a distribution over x, but no closed-form expression for p(x, z, 6).

Lepus americanus
= Lynx canadensis

Thousands furs

Example: Lotka-Volterra (predator-prey) equations:
dx d
— =—ax—fy+e 7{:5Xy—VY+€

@ x,y are the number of prey and predators, respectively; «, 3,0, are
parameters; we sample initial state xg, yo from some prior; € is Gaussian noise

@ We can easily simulate (x, y)-trajectories but not compute their distribution
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Implicit Variational Inference

How can we perform inference in implicit models? Treat it like a GAN!

Suppose want to learn g(z|x) and q(f). Let g(x) denote the empirical
distribution of data {x;}"_;. We can write the ELBO as:

L== Z Eq(6)q(z1x) [l0g P(xi, i, 0) — log q(zi|x;) — log q(0)]

( I7 I)
= - Eq0)q(zx) |10 + log q(x;
Z 0)q(zi|xi E q(Z,, Xi, ) g ( )

const
p(Xi7 Zj, 9)

= Eq(G)q(z,-,x,-) [Iog q(x,,z,,6’)] + const

If we can estimate the log-ratio log %, we can optimize the ELBO
(Tran et al., 2017).
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Implicit Variational Inference

How do we estimate the log-odds ratio log %?

We train a discriminator o(r(x, z,0)) to distinguish between real x;, z;, 0
sampled from p(x, z,6) and fake ones sampled from g(x, z,6) (as in
BiGAN), minimizing the cross-entropy

D = By0) 08 0(r(x,2.0))] + Eqrz) [08(1 — o(r(x,2.6)))].
As we saw in our lectures on GANs, the optimal r* is
r*(x, z,0) = log p(x, z,0) — log q(x, z, 0).
After we trained r*, we learn g to optimize our estimate of the ELBO
Eq(x,z.,0) [r*(xi; i, 0)] -

The final estimate of the parameters is given by the approximate Bayesian
posterior q(6).
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Lecture Outline

@ Probabilistic Reasoning

e Motivational Example: Modeling Student Grades with Bayes Nets
o Probabilistic Approach to Machine Learning, Box's Loop
o In-Depth Example: Topic Modeling with Latent Dirichlet Allocation

@ Deep Generative Models & Probabilistic Modeling

e Composing Probabilistic Models with Deep Neural Networks
o Examples: GMMs, Deep Kalman Filters

© Neural Networks & Probabilistic Inference

e Black-Box Variational Inference
e Implicit Variational Inference

@ Probabilistic Programming
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Probabilistic Programming

In probabilistic programming, we specify probabilistic models using
computer programs.
@ The generative story of our model is specified by an arbitrary
computer program

e This is more general that standard math, e.g. can define control flows.
o Can represent arbitrary computable data generation processes

@ In practice, one uses domain-specific languages (PyMC3, Stan,
Edward, Pyro)

o Languages provide useful primitives (e.g., probability distributions)
e They make it possible to automate inference for a given program

@ Probabilistic programming holds a lot of promise for advancing ML

e Analysts only need to specify the model
o Inference engine allows instantly answering arbitrary inference queries
e Very promising in science: can quickly experiment with many models

Probabilistic programming is still a very active research area.
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Deep Probabilistic Programming

Probabilistic programming also benefits for recent advances in deep
learning. Modern deep probabilistic programming languages:

@ Specify the sampling process via a deep neural network

@ Use deep neural networks for accelerating inference (e.g., using
Implicit VI)

@ Use existing software and hardware to accelerate development speed
and ease-of-use as well as execution and training speed
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Edward (Tran et al., 2017)

Edward was an early deep probabilistic programming language built on top

of Tensorflow.
phi = Dirichlet (alpha=tf.zeros([K, V]) + 0.05)

K
P z=[[0] * N] +D
@ w=1[[0] «N] «D
10 for d in range(D):
N

1 for n in range (N[d]):

D 12 z[d] [n] = Categorical (pi=thetald, :])
13 w(d] [n] = Categorical (pi=phi(z[d][n], :])

4 # number of documents

[11502, 213, 1523, 1351] # words per doc
10 # number of topics

100000 # vocabulary size

<m=zUo

theta = Dirichlet (alpha=tf.zeros([D, K]) + 0.1)

P P N T,

©

Figure 11: Latent Dirichlet allocation (Blei et al., 2003).

@ Programs as Tensorflow graphs with random variables at some nodes

@ Inference engine takes another TF graph for g and automates VI

@ Representation, inference, learning, sampling is built on top of TF and
can arbitrarily mix neural network and classical components
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Summary of the Lecture

@ Generative models are a prominent example of probabilistic reasoning,
a general approach to machine learning
e Provides a principled way of specifying inductive biases
o Three key tasks: representation, learning, and inference
e Box’s loop is a procedure for developing such models
@ Classical probabilistic models can be composed with neural networks
e We can manually encode the structure that we know (e.g., number of
components)
o We can let neural nets learn unknown structure (e.g., shape of
components)
@ Neural networks can also improve inference and learning
e By using flexible neural networks for g, we can automate variational
infernece
e We can also learn more general models, such as implicit ones

@ Probabilistic programming provide tools for developing probabilistic
models
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