Personal tools
You are here: Home Research Trends & Opportunities High Performance and Quantum Computing High Performance Computing Systems and Applications

High Performance Computing Systems and Applications

Supercomputer_Lawrence_Livermore_National_Lab_1
(Supercomputer, Lawrence Livermore National Laboratory)
 

- High-Performance Computing (HPC)

High Performance Computing (HPC) most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business. 

HPC is the use of parallel processing and supercomputers to run advanced and complex application programs. The system focuses on developing parallel processing systems by integrating both administration and computational methods. And for decades, HPC and supercomputing were intrinsically linked. 

 

- WhyDo We  Need the HPC?

Specialized computing resources were necessary to help researchers and scientists extracts insights from massive data sets. Scientist need HPC because they hit a tipping point. At some point in research, there is a need to:

  • Expand the current study area (regional → national → global)
  • Integrate new data
  • Increase model resolution

 

But … processing on my desktop or a single server no longer works. Some typical computational barriers:

  • Time – processing on local systems is too slow or not feasible
  • CPU Capacity -- Can only run one model at a time
  • Develop, implement, and disseminate state-of-the-art techniques and tools so that models are more effectively applied to today’s decision-making
  • Management of Computer Systems – Science Groups don’t want to purchase and manage local computer systems – they want to focus on science

 

- Exascale Computing

A supercomputer can contain hundreds of thousands of processor cores and require entire buildings to house and cool—not to mention millions of dollars to create and maintain them. But despite these challenges, more and more devices will come online as the U.S. and China develop new "exascale" supercomputers that promise to boost performance fivefold compared to current leading systems .

Exascale computing is the next milestone in supercomputer development. Exascale computers, capable of processing information faster than today's most powerful supercomputers, will give scientists a new tool to solve some of the biggest challenges facing our world, from climate change to understanding cancer to design New Materials. 

Exascale computers are digital computers, broadly similar to today's computers and supercomputers, but with more powerful hardware. This makes them different from quantum computers, which represent an entirely new approach to building computers suitable for specific types of problems.

 

 

 

[More to come ...]

 

 

Document Actions